Multiple singular integrals and Marcinkiewicz integrals with mixed homogeneity along surfaces
نویسندگان
چکیده
منابع مشابه
Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...
متن کاملSingular Integrals with Mixed Homogeneity in Product Spaces
Let Ω ∈ L(logL+)2(Sn−1 × Sm−1) (n, m 2) satisfy some cancellation conditions. We prove the Lp boundedness (1 < p < ∞ ) of the singular integral T f (x1,x2) = p. v. ∫ ∫ Rn×Rm Ω(y1,y ′ 2)h(ρ1(y1),ρ2(y2)) ρα 1 (y1)ρ β 2 (y2) f (x1 − y1,x2 − y2)dy1 dy2, where ρ1 , ρ2 are some metrics which are homogeneous with respect to certain non-isotropic dilations. We also study the above singular integral alo...
متن کاملMarcinkiewicz integrals along subvarieties on product domains
Stein proved that ifΩ∈ Lipα(Sn−1), (0<α≤ 1), then μΩ is bounded on Lp for all 1<p ≤ 2 [18]. Since then, the study of the Lp boundedness of μΩ under various conditions on the function Ω has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among others). In particular, Chen et al. in [8] studied the Lp boundedness of μΩ under the following condition on the function Ω which was intro...
متن کاملEstimates for Singular Integrals along Surfaces of Revolution
We prove certain L estimates (1 < p <∞) for non-isotropic singular integrals along surfaces of revolution. The singular integrals are defined by rough kernels. As an application we obtain L boundedness of the singular integrals under a sharp size condition on their kernels. We also prove a certain estimate for a trigonometric integral, which is useful in studying non-isotropic singular integrals.
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2012
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2012-189